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INTRODUCTION 

Differential Equations 

The subject of differential equations (DE) constitutes a large and very important branch of modern mathematics. 
From the early days of calculus, the subject has been an area of great theoretical research and practical applications, 
and it continues to be so these days. In applications of mathematics to the technical sciences, differential equations 
occupy a particularly important place. They make it possible to solve many issues of general technical and special 
applied disciplines: physics, theoretical mechanics, material resistance, hydraulics, machine and mechanism theory, 
chemistry, production technology, biology, financial and economic, as well as other disciplines, and often emerge 
during problem solving. Numerous and diverse technical applications of the theory of ordinary differential equations 
require primarily knowledge of various physical and mechanical laws. The teaching and learning differential equations 
have been investigated for the last decade [1-5]. 

Artigue mentions that since the 17th Century, the theory of differential equations developed mathematically in several 
sets, such as: 

1. Algebraic tools, where solutions are expressed through exact algebraic formulas, explicit or implicit, series
expansions, integral expressions.

2. Numerical tools, where solutions are expressed through values of numerical approximations.
3. Geometric tools to characterise, from a topological point of view, the set of solution curves, that is, through

the portrait of the equation - such a resolution is often called a qualitative solution [6].

Stephan and Rasmussen present an analysis of mathematical practices in the classroom, which they established during 
the instruction of first-order differential equations. The predictions are exponential in their form - as the authors call 
them - since they correspond to population growth models, which in this case is working with rabbits, and the 
predictions are based on an equation that is born from understanding the rate of change that models the scenario of 
the real world [7]. 

Arslan tells that …since traditional DEs courses focus mainly on algebraic solutions and the techniques of algebraic 
solutions, and dismiss the conceptual understanding of DEs, students are satisfied with getting better in applying 
the algebraic techniques alone [1].  

Czocher presents a causal-comparative study of mixed methods of two instructional approaches in a course of differential 
equations for engineering students. He mentions …that by having a better understanding of the role of conditions on 
the real world and the behavior of the phenomenon, it helps to make the appropriate conjectures in the analytical method 
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of undetermined coefficients [8]. This type of modelling relies on the understanding of analytical methods; however, one 
needs to take into account that working with conditions in the real world helps to understand notions, such as the 
uniqueness of the solution. That is, in a problem modelled from Newton’s law of cooling, hypothesis-generating questions 
can arise when the uniqueness of the solution is conflicted in considering the real world. 

Maple Computer Algebra System 

Maple is a mathematical computer program, designed to perform a variety of mathematical calculations and operations 
on symbolic, as well as numeric entities. There are several examples of using CAS in higher education, including 
specific developments in teaching. One of the promising educational areas in which the use of information technologies 
seems to be the most promising is mathematics [9][10]. 

Physics teachers also began to pay more attention to the use of CAS in theoretical courses in general, and differential 
equations in particular, since when solving most physical problems, especially in theoretical physics courses, it is 
necessary to perform bulky mathematical calculations, which can cause some difficulties for students [11][12]. 

How does Maple CAS help to teach and learn differential equations? 

The Maple CAS is an indispensable assistant in teaching various sections of mathematics. This applies to the subject 
Ordinary Differential Equations. Most of the intermediate steps of solving a problem used by the dsolve command are 
available to the user, including all steps related to the use of symmetry groups and an integrating factor. Additional 
parameters in the dsolve command allow ordinary differential equations to be solved using methods selected by 
the user, with or without an integration step. All this makes it easier to understand both the possible different methods 
of solving the problem and the application of the dsolve command and the associated Maple commands, and can be 
successfully used to work in a computer class. 

Maple has a special DEtools package, which is mainly designed for professional work with ordinary differential 
equations. Using the functions of this package, one can transform differential equations using integrating factors and 
Lie symmetry groups, lower the order of the equation in question, calculate singular points, convert high-order 
equations to a system of first-order equations, classify ordinary differential equations, and much more. A large group of 
functions in this package is designed to visualise numerical solutions to the Cauchy problem for ordinary differential 
equations and systems of such equations. 

The functions of the DEtools package can be used for educational purposes. The authors will briefly focus on these 
features of the package now. Packages are loaded by entering the command: 

with(packagename). 

To access DEtools features, one must enter: 

> with(DEtools): 

or load the desired function, for example, the odeadvisor command, using the following: 

> with(DEtools, odeadvisor): 

In the solutions of differential equations, the most important specific training is to develop the ability to place a differential 
equation in the proper class. The odeadvisor command plays an important role in training. The main purpose of this 
function is to classify this equation according to the standards outlined in the reference books for ordinary differential 
equations and to display a reference page containing information for solving the equation. Reference pages include 
examples and a Maple input string, along with some advice that allows the user to adapt this information to their task. 

Conceptual Understanding 

The development and improvement of a conceptual understanding of mathematical content are one of the important 
goals of teaching differential equations. Various studies have confirmed the students’ difficulties in understanding 
the concepts of differential equations [13-15].  

The mathematical activity of students, including operational and algorithmic actions and forming skills tasks, involve: 
formulating algorithms, performing actions on ready-made algorithms, checking and correcting algorithms, combining 
algorithms, breaking complex tasks into subtasks, and developing ideas about algorithmic processes and methods for 
their description. 

The potential of the subject of differential equations in the context of the formation of algorithmic competence of future 
engineers lies in the use of CAS in differential equations classes, contributing to the transition of teaching differential 
equations to a qualitatively new level (reducing the time spent on mathematical calculations, effective verification of 
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the correctness of the solution, choosing the optimal solution, approximate calculations, the possibility of plotting 
complex functions, etc) [16]. 

METHODOLOGY 

This part of the present study addresses whether and how students can develop conceptual understanding through 
problem solving using CAS low-level commands rather than procedure-based learning using predefined algorithms in 
the DE subject. Maple can solve a variety of non-linear first-order equations that are typically encountered in the 
introductory differential equation subject. The use the odeadvisor function, which is contained in the DEtools package, 
is to help students classify equations. No output means that Maple cannot solve the problem, that the problem has no 
solution. Generally, when Maple returns nothing, one should try other methods to determine if the problem has 
solutions that Maple cannot find. 

ELECTRIC CIRCUIT PROBLEMS 

In this section, the authors consider the application of differential equations to a series circuit containing: 
1) an electromotive force; and 2) a resistor, inductor and capacitor [3][17]. Let simply recall that the electromotive force
(for example, a battery or generator) produces a flow of current in a closed circuit and that this current produces 
the so-called voltage drop across each element: a resistor, inductor and capacitor. Further, the following three laws 
concerning the voltage drops across these various elements are known to hold: 

1. The voltage drop across a resistor is given by RE Ri= , where R is a constant of proportionality called the
resistance, and i is the current.

2. The voltage drop across an inductor is given by L
diE L
dt

= , where is L  a constant of proportionality called the 

inductance, and i again denotes the current.

3. The voltage drop across a capacitor is given by
1

CE q
C

= , where C is a constant of proportionality called the 

capacitance and q is the instantaneous charge in the capacitor. Since 
dqi
dt

= this is often written as 
1

CE idt
C

= ∫ .

A circuit has in series an electromotive force given by 100sin 40E t=  V, a resistor of 10 Ω, and an inductor of 0.5  H. 
If the initial current is 0, find the current at time 0t > . 

Formulation: i denotes the current in amperes at time t . The total electromotive force is 100sin 40t  V. Applying 
Kirchhoff’s voltage law, one finds that the voltage drops are as follows: 

1. Across the resistor: 10RE Ri i= = . 

2. Across the inductor:
1
2L

di diE L
dt dt

= =

Applying Kirchhoff’s law, have the differential equation: 

1 10 100sin 40
2

di i t
dt

+ = , or 

20 200sin 40di i t
dt

+ = .          (1) 

Since the initial current is 0, the initial condition is: 

( )0 0i = .     (2) 

Solution: Equation (1) is a first-order linear equation. An integrating factor is: 

20 20dt te e∫ = .

Multiplying equation (1) by this, one obtains: 

( )

20 20 20

20 20

20 200 sin 40

200 sin 40

t t t

t t

die e i e t
dt

d e i e t
dt

+ =

=
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Integrating and simplifying, one can find: 

( ) 202 sin 40 2cos 40 ti t t Ce−= − + .

Applying the condition (2), 0i =  when 0t = , one can find that 4C = . Thus, the solution is: 

( ) 202 sin 40 2cos 40 4 ti t t e−= − + .

Expressing the trigonometric terms in a phase-angle form, one can have: 

201 22 5 sin 40 cos 40 4
5 5

ti t t e− 
= − + 

 

or ( ) 202 5 sin 40 4 ti t eφ −= + + ,       (3) 

where φ  is determined by the equation: 

1 2arccos arcsin
5 5

φ  
= = − 

 
. 

One finds 1.11φ ≈ − rad, and hence, the current is given approximately by: 

( ) 204.47 sin 40 1.11 4 ti t e−= − + .

Interpretation: the current is clearly expressed as the sum of a sinusoidal term and an exponential one. The exponential 
one becomes so very small in a short time that its effect is soon practically negligible; it is a transient term. 

Thus, after a short time essentially all that remains is the sinusoidal term; it is the steady-state current. Observe that its 

period 
20
π

 is the same as that of the electromotive force. However, the phase angle 1.11φ ≈ −  indicates that the 

electromotive force leads the steady-state current by approximately ( )1 1.11
40

. 

Here, the authors include examples of using Maple to see and check solutions step by step. 
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> eq:=diff(i(t),t)+20*i(t)=200*sin(40*t); 

 := eq  =  + 





d

d
t ( )i t 20 ( )i t 200 ( )sin 40 t

> init:=i(0)=0;

 := init  = ( )i 0 0

> dsolve({eq,init},i(t));

 = ( )i t  −  + 2 ( )sin 40 t 4 ( )cos 40 t 4 e ( )−20 t

> with(DEtools):
> odeadvisor(eq);

[ ][ ],_linear class A

> dsolve(eq,[linear],useInt); 

 = ( )i t  + e ( )−20 t d⌠
⌡
200 ( )sin 40 t e ( )20 t t e ( )−20 t _C1

> simplify(value(%)); 

 = ( )i t e ( )−20 t ( ) −  + 2 ( )sin 40 t e ( )20 t 4 ( )cos 40 t e ( )20 t _C1

> mu:=intfactor(eq); 

 := µ e ( )20 t

> mu*eq; 

 = e ( )20 t 





 + 






d

d
t ( )i t 20 ( )i t 200 ( )sin 40 t e ( )20 t

> dsolve(mu*eq,[exact]); 

 = ( )i t  −  − 2 ( )sin 40 t e ( )20 t 4 ( )cos 40 t e ( )20 t _C1

e ( )20 t

> simplify(%);
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 = ( )i t ( ) −  − 2 ( )sin 40 t e ( )20 t 4 ( )cos 40 t e ( )20 t _C1 e ( )−20 t

> with(plots):
> sol:=dsolve({eq,init},i(t));

 := sol  = ( )i t  −  + 2 ( )sin 40 t 4 ( )cos 40 t 4 e ( )−20 t

> plot(rhs(sol),t=0..Pi/4,color=black); 

Figure 1: Sketching graphics with Maple. 

CONCLUSIONS 

Maple is one of computer algebra systems and is now widely used in engineering practice, in education and research. 
In this article, the authors discuss the advantages of using low-level commands of Maple CAS as a tool for 
a better understanding of application problems of differential equations. Teaching ideas shared in this article may be of 
an interest to teachers who want to explore differential equations in engineering education. 
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